Progress in the Development of All-Back-Contacted Silicon Solar Cells
نویسندگان
چکیده
N-type all-back-contact (ABC) silicon solar cells incorporating a simple oxide-nitride passivation scheme are presently being developed at the Australian National University. Having already achieved promising efficiencies with planar ABC cells [1], this work analyses the cell performance after integrating a surface texturing step into the process flow. Although the textured cells have significantly lower front surface reflection, the measured short-circuit current density is actually lower than that of the planar cells. Photoconductance decay data indicate the presence of high carrier recombination at the textured surface of the ABC cells, which are deposited with a stack of thermal oxide and LPCVD nitride. Further examination confirmed that high carrier recombination is due to stress induced by the LPCVD nitride on the peaks and valleys of the textured surface. Use of PECVD nitride instead of LPCVD nitride as an antireflection layer avoids the degraded carrier lifetime caused by the textured surface. Therefore, PECVD nitride should be a good substitute for constructing the oxide-nitride stacks of our future ABC cells. © 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Solar Energy Research Institute of Singapore (SERIS) – National University of Singapore (NUS). The PV Asia Pacific Conference 2011 was jointly organised by SERIS and the Asian Photovoltaic Industry Association (APVIA).
منابع مشابه
Optimization of Chemical Texturing of Silicon Wafers Using Different Concentrations of Sodium Hydroxide in Etching Solution
In this paper, the morphology of chemically etched silicon with various concentration is reported. The surface of Silicon (100) has pyramidal structures which can be used for anti-reflection applications in solar cells. Pyramidal structures can capture incident sun light therefore can enhance the efficiency of silicon solar cells. The structure of silicon pyramid was studied using scanni...
متن کاملHigh efficiency black silicon Interdigitated Back Contacted solar cells on p- and n-type c-Si substrates
This work demonstrates the high potential of Al2O3 passivated black silicon in high efficiency Interdigitated Back Contacted (IBC) solar cells by reducing surface reflectance without jeopardizing surface passivation. Very low reflectance values, below 0.7% in the 300-1000 nm wavelength range, together with striking surface recombination velocities values of 17 and 5 cm/s on pand n-type crystall...
متن کاملRecent development of carbon nanotubes materials as counter electrode for dye-sensitized solar cells
Dye-sensitized solar cells present promising low-cost alternatives to the conventional Silicon (Si)-based solar cells. The counter electrode generally consists of Pt deposited onto FTO plate. Since Pt is rare and expensive metal, nanostructured carbonaceous materials have been widely investigated as a promising alternative to replace it. Carbon nanotubes have shown significant properties such...
متن کاملInkjet Printing of Isolation Layers for Back-Contacted Silicon-Heterojunction Solar Cells
For wafer based silicon solar cells, the combination of amorphous/crystalline silicon (a-Si:H/c-Si) heterojunction emitters (SHJ) [1] and back-contacted back-junction solar cell concepts (BCBJ) [2] offer a very high efficiency potential of around 24%. Stangl et al. proposed a relatively simple and therefore attractive cell concept comprising a two level metallization isolated by an insulation l...
متن کاملStudy the Effect of Silicon Nanowire Length on Characteristics of Silicon Nanowire Based Solar Cells by Using Impedance Spectroscopy
Silicon nanowire (SiNW) arrays were produced by electroless method on polycrystalline Si substrate, in HF/ AgNO3 solution. Although the monocrystalline silicon wafer is commonly utilized as a perfect substrate, polycrystalline silicon as a low cost substrate was used in this work for photovoltaic applications. In order to study the influence of etching time (which affects the SiNWs length) on d...
متن کامل